
Vulkan Validation Layer
Error Reporting Improvements
Mark Lobodzinski, LunarG
August 2020

Introduction
The Vulkan validation layers provide important information about the behavior and correctness
of applications, and it is important that validation transfers this information to the user as clearly,
usefully, and completely as possible.

Community feedback, received through LunarXchange, Github, and Vulkan Ecosystem Surveys
have highlighted several areas for improvement and we have recently turned our focus towards
updating the layer messaging systems.

Recent Improvements
This document will introduce the user to several recent improvements or additions to Validation
layer messaging:

● VUID-Annotated specifications in SDKs
● Returning Relevant Vulkan Objects in Debug Callback
● Unique Message Identifiers
● Plain-text Object Types and Names
● Message Filtering
● Message Repetition Limit

VUID-Annotated specifications in SDKs
Validation error messages have long included a link to the valid usage identifier (VUID) in the
Khronos specification. This had two disadvantages:

● The link pointed to the most recent version of the specification in the Khronos Registry,
instead of the version specific to the validation error

● While the links went to the area of the specification containing the VUID, it was unclear
which text on that page related directly to the VUID in question

To improve the accuracy and relevance of these links, layers included in Vulkan SDK releases
now provide links to annotated versions of the Vulkan specification. These documents contain
plain-text VUIDs as part of the VUID text and are persistent links to the specific version and

08/2020 LunarG Vulkan Validation Layer Error Reporting 1

class of the specification containing the VUID. Here’s an example from the DestroyImage
section of the specification:

Note that the specific VUID included in the validation error message is clearly visible and gives
the user immediate context and clarity as to the source of the violation.

Returning Relevant Vulkan Objects in Debug Callback
The layers were originally developed using the now-deprecated VK_EXT_debug_report
extension. The debug callback definition for this extension allowed only a single Vulkan object to
be returned to the user. This extension has been superseded by the VK_EXT_debug_utils
extension, and its debug callback allows all relevant Vulkan objects to be returned via the
callback function.
The validation layers have been updated and scrubbed to ensure that any object output in the
text of a message is now also passed to the user through the callback, allowing programmatic
access to these objects for debugging purposes.

typedef struct VkDebugUtilsMessengerCallbackDataEXT {
 VkStructureType sType;

 const void* pNext;
 VkDebugUtilsMessengerCallbackDataFlagsEXT flags;

 const char* pMessageIdName;
 int32_t messageIdNumber;

 const char* pMessage;
 uint32_t queueLabelCount;

 const VkDebugUtilsLabelEXT* pQueueLabels;
 uint32_t cmdBufLabelCount;

 const VkDebugUtilsLabelEXT* pCmdBufLabels;
 uint32_t objectCount;

08/2020 LunarG Vulkan Validation Layer Error Reporting 2

 const VkDebugUtilsObjectNameInfoEXT* pObjects;
} VkDebugUtilsMessengerCallbackDataEXT;

Each of the Vulkan objects returned will also include the object name/label, if specified by the
user, for instance by the vkSetDebugUtilsObjectNameEXT() function also provided by the
extension.

typedef struct VkDebugUtilsObjectNameInfoEXT {

 VkStructureType sType;

 const void* pNext;

 VkObjectType objectType;

 uint64_t objectHandle;

 const char* pObjectName;
} VkDebugUtilsObjectNameInfoEXT;

Unique Message Identifiers
Validation message output now includes a hash of the VUID string, allowing simpler handling of
specific messages in message callbacks or debugging utilities. This numeric value is printed
out as part of the normal message output, and is also included in the callback data as the
messageIdNumber member of the VkDebugUtilsMessengerCallbackDataEXT
structure, or the location member of PFN_vkDebugReportCallbackEXT().

The identifier appears in all validation messages, for instance in this example:

Validation Error: [VUID-VkImageResolve-dstImage-00276] Object 0: handle = 0x2aa03237048, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x3ba5830000000006, type =
VK_OBJECT_TYPE_IMAGE; | MessageID = 0x3c65a6c9 | vkCmdResolveImage(): dstImage (VkImage
0x3ba5830000000006[]) is 1D but pRegions[0] dstOffset.y (0) is not 0 or extent.height (2) is not 1. The
Vulkan spec states: If the calling command's dstImage...

Plain-text Object Types and Names
The validation messages previously output the Vulkan object type with the handle, but as an
integer enumeration value. The messaging system now outputs the enumeration name with the
object, for example:

Validation Error: [VUID-VkImageResolve-srcImage-00268] Object 0: handle = 0x2aa03237048, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x983e60000000003, type =
VK_OBJECT_TYPE_IMAGE; Object 2: handle = 0xa540ac0000000009, type =
VK_OBJECT_TYPE_IMAGE; | MessageID = 0x7711e6f5 | vkCmdResolveImage(): pRegions[0]
baseArrayLayer must be 0 and layerCount must be 1 for all subresources if the src or dst image is 3D...

08/2020 LunarG Vulkan Validation Layer Error Reporting 3

Message Filtering
The validation layers have recently been updated with a layer option that allows specific
validation messages to be suppressed, should this be desired.
This can be done through the standard layer settings interfaces, by specifying the error
message identifier or identifiers with the option key. For example, if the user wishes to prevent
output of two messages with messageIdNumbers of 3012204 and 0x02044177, they could do
so through the Vulkan Configurator utility included in the SDK, or manually by:

Vk_layer_settings.txt file
khronos_validation.message_id_filter=3012204,0x02044177

Environment Variable
Windows: set VK_LAYER_MESSAGE_ID_FILTER=3012204;0x02044177
Linux: export VK_LAYER_MESSAGE_ID_FILTER=3012204:0x02044177

Message Repetition Limit
Another often-requested feature was the ability to limit the number of times any single validation
message would be reported. This option was recently implemented and allows the user to set a
maximum for validation message repetitions. For example, to cap the number of message
repeats to 10, the user might do so through the Vulkan Configurator utility included in the SDK,
or manually by:

Vk_layer_settings.txt file
khronos_validation.duplicate_message_limit=10

Environment Variable
Windows: set VK_LAYER_DUPLICATE_MESSAGE_LIMIT=10
Linux: export VK_LAYER_DUPLICATE_MESSAGE_LIMIT=10

Acknowledgments
Please acknowledge the extensive contributions of

● Mike Schuchardt
● Tony Barbour

08/2020 LunarG Vulkan Validation Layer Error Reporting 4

Revision history

Revision Date SDK Release Comment

September 2020 SDK 1.2.148.1 Initial release date

08/2020 LunarG Vulkan Validation Layer Error Reporting 5

