The Vulkan Portability
Enumeration Extension

Charles Giessen, LunarG, Inc.
April 2022

Introduction

Vulkan® Portability™ aims to counter platform fragmentation by encouraging layered
implementations of Vulkan functionality over Metal, DX12, and other APIs. Vulkan Portability
enables Vulkan applications to be reliably deployed across diverse platforms.

Khronos released a provisional version of Vulkan Portability Extension 1.0 in September 2020.
The VK_KHR_portability_subset extension allows a non-conformant Vulkan implementation to
be built on top of another non-Vulkan graphics API, and identifies the difference between that
implementation and a fully-conformant native Vulkan implementation. The extension is detailed
in the Vulkan Specification.

For already released applications that are expecting to see only fully Vulkan conformant
devices, a backward-compatibility issue exists:

1. Applications already developed and released before the existence of the portability
subset extension don’t have a way to get only fully conformant physical devices when
enumerating the devices available to an application. This could result in poor application
behavior (performance, rendering artifacts, crashes, etc).

2. On Windows, Linux, and macOS, there is a mixture of conformant and non-conformant
devices that exist today or in the future.

3. If a non-conformant device is used, validation of the VK_KHR _portability _subset for the
non-conformant devices will generate validation errors if the application didn’t query for
the portability subset extension. But since the application was released before the
creation of the portability subset extension, it doesn’t know it should query the
VK_KHR_portability_subset extension.

Thus, to maintain backward compatibility for applications that are expecting conformant devices,
we need to ensure that the Vulkan loader only provides conformant physical devices from
vkEnumeratePhysicalDevices().


https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_portability_subset.html

LUNAR

Solving the Backward Compatibility Issue

To solve the backward compatibility issue, Khronos has released the new Vulkan Loader
extension, VK_KHR_portability_enumeration. The purpose of this extension is to enable or
disable enumeration of portability (hon-conformant) implementations.

VK_KHR_portability_enumeration is a new Vulkan API extension for the portability initiative that
allows applications to opt into enumerating portability devices. This means that applications not
designed to work with the VK_KHR_portability _subset extension won’t accidentally find physical
devices which support the subset extension.

Usage is straightforward. First, because this is an instance extension, an application must check
for and enable the extension in VkinstanceCreatelnfo::ppEnabledLayerNames. The name of the
extension is available through the macro
VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME.

Now add the VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR flag to
VkinstanceCreatelnfo::flags and create an instance. Physical devices that support the
VK_KHR_portability_subset extension will now be enumerated in vkEnumeratePhysicalDevices.

A possible implementation is as follows:

VkInstanceCreateInfo instance_create_infof{};
instance_create_info.flags =
VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames =
{ VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME };

VkInstance instance;
vkCreateInstance(&instance_create_info, NULL, &instance);

// Can now enumerate VkPhysicalDevices which support the
VK_KHR_porability_subset
vkEnumeratePhysicalDevices(instance, Scount, ...);

If the application sees physical devices that support the VK_KHR _portability subset extension,
the application can now continue to query the portability subset and continue it's
implementation.

April 2022 The Vulkan Portability Enumeration Extension 2



LUN/\R)G

To realize the benefits of the new portability enumeration extension, applications will need to
update the loader version in their application bundle. Applications that currently target the
portability subset will need to enable the VK_KHR _portability_enumeration extension and
modify their VkInstanceCreateInfo accordingly. This is because physical devices which
support VK_KHR _portability _subset will no longer be provided by default without enabling the
portability enumeration extension.

Potential impact to existing MoltenVK applications

Phased release plan

The initial release of the portability enumeration extension (in the Vulkan 1.3.211.0 SDK) will not
prevent applications from using portability devices and instead will issue a warning if the
extension is not enabled. That way applications which don’t enable the extension aren’t
suddenly unable to find portability devices after updating their loader. A subsequent release will
then mandate the use of the portability enumeration extension.

Portability Drivers interface with Vulkan Loader

The way to create a ‘portability driver’ is to add the "is_portability _driver”: true to the ICD
Manifest json file. For more information on the interface between the driver and the Vulkan
Loader, refer to the Loader-Driver-Interface documentation.

April 2022 The Vulkan Portability Enumeration Extension 3


https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderDriverInterface.md#loader-implementation-of-vk_khr_portability_enumeration

