
The State of Vulkan on Apple Devices
Why you should be developing for the Apple ecosystem with Vulkan, and how to do it.

Richard S. Wright Jr., LunarG
June 3, 2021
Revised April 15, 2022

If you are reading this, you likely already know what Vulkan is -- a low-overhead,
high-performance, cross-platform, graphics and compute API designed to take maximum
advantage of today's highly parallel and scalable graphics and compute hardware. To be sure,
there are other APIs with this goal such as Microsoft’s DirectX and Apple’s Metal API. For a long
time OpenGL matured to meet the needs of rapidly evolving hardware and met well the
challenges of cross-platform development of high-performance graphics applications. OpenGL
will remain viable for a very long time for many applications (and can actually be layered on top
of Vulkan), but to take maximum advantage of modern hardware, a new and somewhat
reinvented approach is called for. Everyone does not need the level of control that Vulkan
provides, but if you do, you can think of Vulkan as a lower-level successor to OpenGL in that it
attempts to enable highly portable, yet high-performance, application development across
desktop and mobile device platforms.

Writing platform specific code does have its advantages, and vendors such as Microsoft and
Apple certainly adore having best of breed titles available exclusively for their customers as it
adds value to their ecosystem. For developers though, it is often in our best interests to make
our products available as widely as possible. Aside from gaming consoles with their mostly
closed development environments, Windows, Linux, Apple, and Android combined represent
most of the market for developers of end user software and games today.

In the past, we used OpenGL to help with 3D technical applications and games that we wanted
to work across platforms. As graphics and compute hardware has evolved, Vulkan has emerged
as the new cross-platform API best suited to take maximum advantage of today's hardware
capabilities, and Vulkan is now widely available with native support across a very
heterogeneous development landscape and is natively supported on Windows, Linux, and
Android operating systems. Just as Microsoft has its own low-level solution in the form of
DirectX, Apple's answer to modern low-level, high-performance graphics is its own Metal API.
Apple does not support a mechanism for an alternate low-level graphics driver. Unless this
changes, or Apple adopts Vulkan directly, there cannot be a native Vulkan driver for Apple
platforms, desktop or mobile. This does not mean however that high-performance Vulkan is not
available on Apple hardware.

1

Vulkan on Metal
The Vulkan Portability Initiative is an effort by the Khronos standards organization to promote
and standardize Vulkan implementations that are layered on other low-level APIs. This is a
common approach when a low-level driver for an API is not available. Vulkan and Apple’s Metal
API are both very thin abstractions of graphics and compute hardware with minimal CPU
overhead. A layered API approach is nothing new as one similar API can often be emulated by
another, while still maintaining high-performance. ANGLE for example was used for years to
layer a stable OpenGL implementation over Direct X for Microsoft Windows on hardware where
native OpenGL may not have been as well supported. Indeed, now, as native OpenGL driver
support begins to wane, OpenGL is being implemented by third parties on top of Vulkan since
native quality Vulkan implementations are now so widely available. In fact, OpenGL is now
marked as deprecated on Apple platforms and is being layered on top of Metal to ensure
continued application support moving forward. Vulkan too can be layered over Metal, and both
APIs are similarly thin and lightweight, which means this can be done with very little additional
overhead. This is exactly where we find ourselves today with MoltenVK, an implementation of
Vulkan that is layered over the native Metal API to support Vulkan development on macOS, iOS,
and tvOS devices.

You may have heard of MoltenVK already, and heard that it is not a fully conformant
implementation of the Vulkan API. This is true, but MoltenVK does cover almost all of the Vulkan
1.1 API, and ongoing work continues to bring MoltenVK closer to full conformance. The purpose
of the portability initiative, and the corresponding portability extension is to provide a standard
API to allow layered Vulkan implementations to indicate in what ways they are not fully
conformant with the Vulkan specification. While MoltenVK on Apple devices may be the first
widely available non-conformant Vulkan implementation, others are in the works, and
non-conformant Vulkan implementations may soon be available and perhaps even
commonplace on Windows and Linux. By using the portability extension, you can ensure your
application is compliant on both fully compliant and “portable compliant” implementations.

Moreover, using the Vulkan SDK, you can make use of a “profiles” layer that will allow you to
validate your code against specific Vulkan hardware profiles or device capabilities while doing
your development on a fully conformant Vulkan platform.

The big question most developers ask is what is missing from macOS when compared to
Vulkan 1.1. Not a great deal really, and to be honest it’s a bit of a moving target. MoltenVK is
within just a handful of tests of being fully conformant with Vulkan 1.0, and work is ongoing
almost daily to close this gap for versions 1.0 and 1.1. Older hardware and Metal versions also
have limitations that must be worked around, but these shortcomings are disappearing as Metal
matures.

It is always best on all platforms to make sure your applications query for available functionality
and either work around it or fail gracefully when they are not available. This is in fact the main
goal of the portability initiative, and if you are initially developing on a non-Apple platform you

Revised April 2022 The State of Vulkan on Apple Devices 2

https://www.khronos.org/vulkan/portability-initiative
https://github.com/google/angle
https://github.com/KhronosGroup/MoltenVK
https://vulkan.lunarg.com/

can use the Vulkan SDK to validate your code against a portability profile
using the Vulkan Configurator (more on this later). If you start your development on Apple
hardware, then moving up to a conformant Vulkan implementation elsewhere should be
relatively trivial. For the latest information about known MoltenVK issues, see the MoltenVK
release notes.

The Vulkan SDK
Your first step to using Vulkan on Apple devices is to obtain the Vulkan SDK from the LunarG
web site at http://vulkan.lunarg.com. The Vulkan SDK contains a prebuilt version of the
MoltenVK library, the Vulkan Loader, headers, libraries, various tools, and the Vulkan Validation
Layers.

In the last year alone, the Vulkan SDK for macOS has received some significant updates: 1)
MoltenVK has advanced from supporting Vulkan 1.0 to Vulkan 1.1, 2) all SDK binary
components are now Universal Binaries fully supporting both x86_64 and Apple Silicon
hardware, and 2) tvOS was added to Apple device support (to be fair, this was in MoltenVK
already, but it was not shipping with the SDK). The Vulkan validation layers have grown from
just the Khronos Validation and API Dump layers to now supporting the Profiles and
Synchronization2 layers as well. The Vulkan SDK as a whole has also gained a newly
redesigned Vulkan Configurator application that makes using the Vulkan Validation Layers far
easier than ever before.

Linking Directly to MoltenVK
There are multiple ways to include MoltenVK in your application. You can use the Vulkan
Loader, or you can link directly to MoltenVK as either a dynamic or static library. We’ll discuss
direct linking first, as the loader approach is not available for iOS or tvOS devices. The Vulkan
SDK includes MoltenVK as both a .dylib for macOS applications, and an XCFramework that can
be used for both desktop and mobile/tvOS development. The .dylib approach will require
distributing the library in your application bundle (in the /Frameworks folder), while the
XCFramework approach statically links the MoltenVK library to your applications executable. A
nice feature of the XCFrameworks is that they support multiple targets for your application
automatically by including just one framework. The Vulkan headers are then found either as part
of the MoltenVK prebuilt library here:

<SDK_install_location>/MoltenVK/include/vulkan

or you can use the independent set of SDK vulkan headers located in

<SDK_install_location>/macOS/include/vulkan

Revised April 2022 The State of Vulkan on Apple Devices 3

https://github.com/KhronosGroup/MoltenVK/blob/master/Docs/MoltenVK_Runtime_UserGuide.md#limitations
https://github.com/KhronosGroup/MoltenVK/blob/master/Docs/MoltenVK_Runtime_UserGuide.md#limitations
http://vulkan.lunarg.com

The headers are not bundled with the Framework, but are made available
separately so they can also be included when using the Vulkan Loader, which is the
recommended way to develop with Vulkan on the desktop (see below).

One reason for bypassing the Vulkan Loader is that you can make use of Metal specific
extensions with Vulkan using the VK_MVK_moltenvk extension found in the MoltenVK specific
headers located here:

<SDK_install_location>/MoltenVK/include/MoltenVK

Note: These extensions (documented in the MoltenVK repository here) will not be portable to
other platforms. If you intend to use your Vulkan rendering code on non-Apple devices, these
extensions should be avoided. In addition, using these Metal-specific extensions also makes it
impossible to make use of the Vulkan Loader and Validation Layers.

Using The Loader
The recommended and most useful way to use Vulkan on desktop platforms or Android is to link
your application to the Vulkan Loader instead of the ICD (in our case MoltenVK) directly. The
Vulkan Loader finds Vulkan-capable drivers on your system and will enumerate physical devices
that you can select from based on your rendering needs. On macOS, the MoltenVK library can
be installed as an ICD (Installable Client Driver - at least as far as the Vulkan Loader is
concerned) in a system path, or included in your applications app bundle. Most developers
choose to include the MoltenVK library in their well-tested applications bundle rather than
adding it as a system library that may be replaced later by another version that could contain
bugs or regressions (each SDK update also updates the MoltenVK library in the system folders).

The loader provides all of the Vulkan entry points and will forward them to the Vulkan driver,
which in our case is the MoltenVK dynamic library. MoltenVK will translate the calls to
appropriate Metal functionality and pass them on to the selected device (you can have more
than one Vulkan-capable hardware device at a time). The biggest advantage of using the Vulkan
Loader over statically linking is that you can make use of one of Vulkan’s premier features --
Validation Layers.

Including MoltenVK in Your Application Bundle
Installing the Vulkan SDK will place the Vulkan Loader (libvulkan.1.version.dylib) and the
MoltenVK library (libMoltenVK.dylib) where they can be found at runtime by your development
environment. This will allow you during development to take maximum advantage of the Vulkan
Layers and the Vulkan Configurator for debugging and testing. End users however should not
have to install the Vulkan SDK in order to run Vulkan applications! You can link directly to
MoltenVK before releasing your application, but you can also ship your application with loader
support by including the loader and MoltenVK in your application bundle.

Revised April 2022 The State of Vulkan on Apple Devices 4

https://github.com/KhronosGroup/MoltenVK/blob/master/Docs/MoltenVK_Runtime_UserGuide.md#moltenvk_extension

The location of the pertinent files in your application bundle would be as follows:

YourAmazingVulkan.app
Contents

Frameworks
libMoltenVK.dylib
libvulkan.1.[version number].dylib
libvulkan.1.dylib -> (sym link to .dylib above)

MacOS
YourAmazingVulkan

Resources
vulkan

icd.d
MoltenVK_icd.json

In the past you could include executable code in the /Resources folder and the MoltenVK library
could be placed alongside the json file. However, Apple’s security policies now prohibit
executable code from being placed there. Thus, the proper location for the Vulkan Loader and
the MoltenVK library is in the /Frameworks folder. The MoltenVK_icd.json file points to the
location of the MoltenVK library and you will need to change the default path in the
MoltenVK_icd.json file thus (this is provided in the Vulkan SDK):

"library_path": "../../../Frameworks/libMoltenVK.dylib",

Vulkan Layers
Vulkan layers are a way to inject (or layer) a dynamic library between your Vulkan API calls and
the Vulkan driver and device. Some layers will perform API validation for you, some will do
logging, and others can add additional functionality to your Vulkan programs. For more
information about Vulkan Layers, see the LunarG Vulkan Layers Overview and Configuration
document. Vulkan Layers are supported on the desktop by macOS, but neither the Vulkan
Loader nor the Validation layers currently are available on iOS or tvOS. Thus for mobile
development, you will need to link directly to the MoltenVK library as described previously.

One useful approach to Vulkan development on Apple mobile devices is to prototype your
rendering code in the desktop environment, make use of the validation layers to clean up and
validate your code, then deploy your shared rendering code to and do your final performance
testing on your iOS or tvOS hardware directly.

The easiest way to make use of Vulkan Layers on any platform is to use the Vulkan
Configurator. More information about the Vulkan Configurator can be found here. Validation
layers typically send their diagnostic output to stdout or stderr and the Vulkan Configurator will
automatically capture this output when your application is launched from the Vulkan
Configurator application. In addition, any layer settings can be easily inspected and edited in the

Revised April 2022 The State of Vulkan on Apple Devices 5

https://vulkan.lunarg.com/doc/view/latest/windows/layer_configuration.html
https://www.lunarg.com/introducing-the-new-vulkan-configurator-vkconfig/

Vulkan Configurator live (you will have to stop and restart your application
when settings change however).

The Vulkan Configurator monitoring layer output on macOS.

Conclusion
The heir to the cross-platform graphics and compute programming throne is Vulkan. Vulkan is a
fresh start after the OpenGL/OpenCL years, and is an ideal low-overhead “close to the metal”
programming approach that also is highly portable across most platforms popular with today’s
developers. Porting to Apple involves detecting the presence of the portability extensions and
being aware of potentially missing functionality or other platform specific limitations. Starting
development on Apple means you can “port up” and your applications are going to run as is on
Windows, Linux, etc. more easily. Moreover, on Windows or Linux you can simulate Apple
hardware capabilities using the Vulkan Configurator and the profiles layer with the
VP_LUNARG_desktop_portability_2021_subset.

If you are already an experienced Vulkan developer who is moving to macOS or Apple
hardware, then there are really only a few important points to note.

1. MoltenVK provides “nearly conformant” Vulkan 1.1 for macOS, iOS, and tvOS; missing
functionality is minor.

2. You cannot use the Vulkan Loader or Validation Layers directly on Apple's mobile
hardware.

Revised April 2022 The State of Vulkan on Apple Devices 6

3. You will likely want to bundle well-tested versions of both the loader
and MoltenVK libraries with your application, and not make use of a system-wide Vulkan
Loader. This is counter to the norm on Windows and Linux.

4. A good strategy for mobile Vulkan development is to test and debug by using both a
desktop and mobile environment simultaneously. Use the Validation Layers on the
desktop to trap and correct any Vulkan usage errors or discover best practices
violations.

5. Since MoltenVK is a subset, if you start your development on Apple devices, porting to
fully conformant Vulkan capable platforms should be relatively painless. Starting your
Vulkan project on macOS for example will help ensure maximum portability, while still
leaving the option open to use additional Vulkan features to enhance your project on
more conformant or capable Vulkan devices.

Vulkan. It’s everywhere. Do the Math.

Revised April 2022 The State of Vulkan on Apple Devices 7

